Epitaxial Growth of δ‐Ga2O3 Thin Films Grown on YSZ and Sapphire Substrates Using β‐Fe2O3 Buffer Layers via Mist Chemical Vapor Deposition

Author:

Kato Takahiro1ORCID,Nishinaka Hiroyuki2ORCID,Shimazoe Kazuki1ORCID,Yoshimoto Masahiro2ORCID

Affiliation:

1. Department of Electronics Kyoto Institute of Technology Matsugasaki Sakyo-ku Kyoto 606-8585 Japan

2. Faculty of Electrical Engineering and Electronics Kyoto Institute of Technology Matsugasaki Sakyo-ku Kyoto 606-8585 Japan

Abstract

Herein, epitaxial δ‐Ga2O3 thin films are successfully grown on various planes of yttria‐stabilized zirconia (YSZ) and c‐plane sapphire substrates by inserting the same crystal‐structured β‐Fe2O3 and bcc‐In2O3 buffer layers via mist chemical vapor deposition. X‐ray diffraction (XRD) measurements reveal that various planes of δ‐Ga2O3 thin films are grown in both the out‐of‐plane and in‐plane orientations using the same crystal‐structured buffer layers to reduce the lattice mismatch. δ‐Ga2O3 (111) is demonstrated to grow on the YSZ (111) in the narrow growth temperature range of 575–675 °C due to thermal instability of β‐Fe2O3 buffer layers. Next, a c‐plane sapphire wafer as a substrate using two buffer layers for the growth of δ‐Ga2O3 is investigated. XRD 2θ–ω scan reveals that the mixture of α‐ and δ‐Ga2O3 thin films is grown on Fe2O3/In2O3/c‐plane sapphire. This is because the Fe2O3 buffer layers are phase separated into α and β phases due to the large grain size of the In2O3 buffer layer. XRD φ‐scan profiles indicate that the δ‐Ga2O3 thin film grown on sapphire is composed of a twin domain. This study contributes to our understanding of the growth mechanism of δ‐Ga2O3 and its future applications in devices.

Funder

Fusion Oriented REsearch for disruptive Science and Technology

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3