Affiliation:
1. Graduate School of Science and Engineering University of Toyama 3190 Gofuku Toyama 930-8555 Japan
2. Academic Assembly Faculty of Engineering University of Toyama 3190 Gofuku Toyama 930-8555 Japan
Abstract
Further development of organic light‐emitting diodes (OLEDs) requires a reduction in driving voltage. Exciplex upconversion‐type OLEDs (ExUC‐OLEDs), which are actively utilized to form exciplexes at the donor/acceptor interface, are an optimal solution for reducing the driving voltage. However, a phenomenon that cannot be explained by simple exciton diffusion is observed in these devices. Herein, an exciton capture layer is inserted into the emitter (donor) layer of ExUC‐OLEDs to elucidate the exciton diffusion mechanism. All ExUC‐OLEDs emit light via triplet–triplet upconversion (TTU) and at more than half the applied voltage (1 V) of the energy gap of the emitter material. In addition, long‐range exciton diffusion of up to 40 nm is confirmed by TTU and singlet fission contributions.
Funder
Japan Society for the Promotion of Science
New Energy and Industrial Technology Development Organization
Izumi Science and Technology Foundation
Shorai Foundation for Science and Technology
Subject
Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献