Investigation of the Impact of Crystalline Arsenolite Oxide Formations on Porous Gallium Arsenide

Author:

Suchikova Yana1ORCID,Lysak Anastasiia2,Kovachov Sergii1,Konuhova Marina3ORCID,Zhydachevskyy Yaroslav12,Popov Anatoli I.3ORCID

Affiliation:

1. Department of Physics and Methods of Teaching Physics Berdyansk State Pedagogical University 71100 Berdyansk Ukraine

2. Institute of Physics Polish Academy of Sciences al. Lotnikow 32/46 02‐668 Warsaw Poland

3. Institute of Solid State Physics University of Latvia 8 Kengaraga 1063 Riga Latvia

Abstract

Herein, the impact of arsenolite oxide (As2O3) crystallites on the structural and optical properties of porous gallium arsenide (GaAs) is examined, focusing on understanding the potential passivation effect and its influence on material stability and safety. Utilizing a comprehensive set of analytical methods, including cathodoluminescence (CL) spectroscopy, Raman scattering spectroscopy, and X‐ray diffraction, the interaction between the GaAs substrate and arsenolite crystallites is characterized. The results indicate that the crystallites do not significantly alter the electronic and optical properties of the underlying GaAs, suggesting a possible passivating effect that could enhance device performance. However, concerns regarding arsenolite's environmental stability and toxicity prompt a cautious approach to its application. Herein, the need for further research into conditions conducive to natural oxide formation, exploration of alternative passivation strategies, and development of safe and stable oxide layers is underscored. Reproducible results are necessary to confirm the differences in CL signals between samples, as the current findings are based on single measurements.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3