Optimization of Activation Annealing Condition for Boron‐Implanted Diamond

Author:

Seki Yuhei1,Kurashima Rintaro1,Yoshihara Minami1,Hoshino Yasushi1ORCID

Affiliation:

1. Faculty of Science Graduate School of Science Kanagawa University 3-27-1, Rokkakubashi, Kanagawa-ku Yokohama Kanagawa 221-8686, Japan

Abstract

Impurity activation of dopants implanted in diamond is one of the crucial issues for device application of diamond. Boron impurity atoms are introduced in diamond, which expectedly act as acceptors, by ion implantation technique, and are investigated the optimum annealing time for the effective dopant activation. The impurity doping is performed by boron ion implantation at multiple incident energies to obtain a uniform dopant concentration from the surface to 350 nm depth followed by activation annealing at 1300 °C for 5–240 min. The electrical properties of specific resistance, carrier concentration, and conduction type are analyzed as a function of temperature from room temperature to 873 K. The estimated ionization energy is strongly dependent on the annealing time and asymptotically approaches to 0.3 eV, which is theoretically expected ionization energy of acceptor boron, with increasing annealing time. A shorter annealing time ( does not sufficiently recover radiation damages caused by ion implantation forming deep levels, which act as irregular conduction. It is consequently found that an optimum window of annealing time for effective dopant activation and suggested carrier transport mechanisms depending on the annealing time.

Funder

Research Institute for Integrated Science, Kanagawa University

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3