Trade‐Off Break between the Crystallinity and Phase Separation of Donor/Acceptor via a General Two‐Dimensional Transition‐Metal Phosphorus Trichalcogenides Nanoparticle Dopant Concept for Efficient and Stable All‐Polymer Solar Cells

Author:

She Luobin1,Zou Chuankai1,Yang Kaihang1,Kang Xiaomin1,Chen Lin2,Tang Jing2,Li Zhenye12ORCID

Affiliation:

1. College of Mechanical Engineering University of South China Hengyang 421001 P. R. China

2. Hunan Dahe New Materials Co., Ltd. Hengyang 421001 China

Abstract

All‐polymer solar cells (all‐PSCs) demonstrate splendid advantages of thermal and mechanical stability. Nevertheless, the rock‐ribbed trade‐off between the crystallinity and phase separation scale of donor/acceptor (D/A) hinder the power conversion efficiency (PCE) improvement of all‐PSCs. Here, a novel two‐dimensional transition‐metal phosphorus trichalcogenides (TMPTCs) namely Cd0.85PS3Li0.3 is intelligently designed and synthesized, and firstly employed as a nanoparticle dopant for PBDB‐T:N2200‐based all‐PSCs. The two‐dimensional Cd0.85PS3Li0.3 possess enormous surface area that can serve as the nucleation center, inducing the crystallinity of D/A without influencing the original phase separation. Such feature significantly boosted the charge transport, PCE (from 7.18% to 8.79%) and stability of PBDB‐T:N2200‐based device. Moreover, the Cd0.85PS3Li0.3 nanoparticle dopant was proved to be universal in non‐fullerene small molecule acceptor (NFSMA)‐based organic solar cells (OSCs), for which the PCE was boosted from 15.05% to 17.27% for PM6:L8‐BO‐based OSCs and from 17.29% to 19.10% for D18:L8‐BO‐based OSCs. These observations exemplify the significance of two‐dimensional TMPTCs nanoparticle dopant as a tool for breaking the rock‐ribbed trade‐off between the crystallinity and phase separation scale of D/A in OSCs, which may open up a special field for making two‐dimensional TMPTCs work in a unprecedented way in OSCs.

Funder

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3