Strengthened Buried Interface via Metal Sulfide Passivation Toward High‐Performance CsPbBr3 Perovskite Solar Cells

Author:

Zhu Shihui1,Zhang Teng1,Liu Wenwen1,Zhao Baohua1,Chen Ziming2,Sun Xinyu1,Wang Tailin1,Chen Yanli1,Liu Heyuan1,Xue Qifan2ORCID,Li Xiyou1

Affiliation:

1. School of Materials Science and Engineering College of Chemistry and Chemical Engineering China University of Petroleum (East China) Qingdao 266580 China

2. State Key Laboratory of Luminescent Materials and Devices Institute of Polymer Optoelectronic Materials and Devices School of Materials Science and Engineering South China University of Technology Guangzhou 510640 P. R. China

Abstract

Although SnO2 has been widely used as the electron transport material (ETM) of the perovskite solar cells (PSCs), the energy level mismatch at the SnO2/CsPbBr3 buried interface is as high as 1 eV, which is disastrous for the CsPbBr3‐based PSCs. Herein, a buffer layer of metal sulfide (CdS, ZnS) is introduced to solve this problem. The power conversion efficiency (PCE) of CsPbBr3 PSCs has been increased from 8.16% to 9.48% for ZnS‐treated SnO2 (ZnS‐SnO2), and a champion efficiency of 10.61% has been achieved in CdS‐treated SnO2 (CdS‐SnO2) devices. Aside from the reduced energy loss, the mobility of the SnO2 ETM has been greatly enhanced after the metal sulfide treatment. The CdS‐SnO2 devices also enjoy the benefits of reduced defect density and speeded carrier extraction, contributing to an almost 30% performance enhancement. This 10.61% PCE is among the highly efficient CsPbBr3‐based PSCs reported to date. Finally, CdS‐SnO2 devices survive a harsh damp heat test (120 °C with a relative humidity of 50%) for a month with less than 15% efficiency loss, demonstrating the superior stability of our CsPbBr3 PSCs.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3