Understanding Coating Thickness and Uniformity of Blade‐Coated SnO2 Electron Transport Layer for Scalable Perovskite Solar Cells

Author:

Siegrist Severin1ORCID,Nandi Pranjal1,Kothandaraman Radha K.1,Abdessalem Aribia1,Tiwari Ayodhya N.1,Fu Fan1ORCID

Affiliation:

1. Laboratory for Thin Films and Photovoltaics Empa - Swiss Federal Laboratories for Materials Science and Technology Ueberlandstrasse 129 8600 Duebendorf Switzerland

Abstract

The low‐cost and fully solution‐based perovskite photovoltaic devices can be upscaled by using the blade coating method. However, control of the charge transport layers thickness on nanometer scale is challenging since the inherent nature of the blade coating process unavoidably induces thickness gradients along the coating direction of blade coated layer. Herein, the film thickness and the uniformity of blade‐coated SnO2 colloidal dispersions in the Landau–Levich regime are systematically studied by varying the substrate temperature, the dispensed solution volume, and the solution concentration as well as the coating speed. It is shown that the advancing meniscus height heavily influences the SnO2 film thickness. As the solution is consumed during the coating process, the meniscus height decreases and hence the film thickness, yielding poor uniformity of the blade‐coated layer. To improve the thickness uniformity, the dispensed solution volume is used to reduce the alteration of the advancing meniscus height along the coating direction and minimize the capillary flow with the appropriate substrate temperature. This study provides crucial insights toward the successful upscaling of perovskite solar cells by blade coating.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3