Improving the Stability of Organic Solar Cells: From Materials to Devices

Author:

Li Yanxun12,Liu Kai-Kai12,Lin Francis R.12,Jen Alex K.-Y.1234ORCID

Affiliation:

1. Department of Materials Science & Engineering City University of Hong Kong Kowloon Hong Kong 999077 China

2. Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon Hong Kong 999077 China

3. Department of Chemistry City University of Hong Kong Kowloon Hong Kong 999077 China

4. State Key Laboratory of Marine Pollution City University of Hong Kong Kowloon Hong Kong 999077 China

Abstract

Organic solar cells (OSCs) are a promising emerging photovoltaic technology for solar energy conversion. Recently, the power conversion efficiencies of the OSCs have been improved to get closer to their Schottky–Queisser limit. However, the operational stability of OSCs remains as a major challenge ahead of their deployment for practical applications. The main causes of OSC instability stem from the poor intrinsic stability of materials, metastable morphology of the multicomponent active layer, unstable interfaces, and sensitivity to moisture and oxygen. To address these issues, it is necessary to have a comprehensive and in‐depth understanding of the OSC fundamentals and develop an integrated solution to overcome them. Herein, the state‐of‐art strategies used to improve the stability of OSCs from the aspects of material design, device processing, and encapsulation techniques, in hope of delivering comprehensive and rational solutions, are summarized. In the end, the prospects toward the future development of efficient and stable OSCs are provided.

Funder

Innovation and Technology Commission - Hong Kong

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3