A Pressure‐Assisted Fast Crystallization Strategy for Perovskite Solar Cells

Author:

Zhang Guodong12,Zheng Yifan12ORCID,Wang Haonan12,Shi Yifeng1,Sun Mengjie3,Ma Xiaorong4,Wang Hu1,Li Qingyuan3,Li Tao4,Yu Junsheng5,Shao Yuchuan123

Affiliation:

1. Key Laboratory of Materials for High-Power Laser Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences Shanghai 201800 China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

3. School of Physics and Optoelectronic Engineering Hangzhou Institute for Advanced Study UCAS Hangzhou 310024 China

4. Center for Spintronics and Quantum Systems State Key Laboratory for Mechanical Behavior of Materials Department of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China

5. State Key Laboratory of Electronic Thin Films and Integrated Devices School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China (UESTC) Chengdu 610000 China

Abstract

The achievement of high‐performance solar cell production hinges on the development of a reliable and effective approach for perovskite crystallization that is compatible with rapid and continuous processing on large substrates. Herein, a pressure‐assisted fast crystallization technique is presented that reduces the thermal annealing period to less than 2 min and achieves the impressive formation of micrometer‐sized vertical‐monolithic perovskite crystals. The pressure‐assisted technique provides confined space and pressure, where the confined space hinders the volatilization of residual solvents and enhances the Ostwald ripening effect. The presence of pressure provides internal energy for crystal growth, while the presence of solvent molecules accelerates solute diffusion. These factors collectively contribute to the rapid growth of grains. Results demonstrate that this pressure‐assisted fast crystallization strategy significantly enhances the power conversion efficiency (PCE) of both n‐i‐p and p‐i‐n perovskite solar cells (PSCs), achieving PCEs of 22.80% and 24.69%, respectively. The improvement in PCE can be attributed to the reduced number of grain boundaries, minimized interfacial defects, and enhanced surface crystalline quality. Importantly, this approach is universal and highly reproducible for solution‐processed manufacturing methods. It is anticipated that this efficient, reliable, and reproducible technique will accelerate the commercialization of PSCs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3