Effective Passivation of Perovskite Solar Cells Involving a Unique Secondary Ammonium Halide Modulator

Author:

Cui Hong123,Ning Yunhao123,Yang Yuxuan14,He Dingqian123,Chen Wentao1,Huang Yuqiong1,Zhao Peng1,Feng Yaqing123,Zhang Bao123ORCID

Affiliation:

1. School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China

2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China

3. Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 P. R. China

4. School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China

Abstract

Aromatic ammonium salts have been regarded as the promising passivators in perovskite solar cell (PSC) fabrications. However, the complicated passivation procedure and inevitable formation of undesirable low‐dimensional (LD) perovskite layers limit further development. Furthermore, how the steric and electronic properties of different ammonium cations would influence the passivation is not well understood. Herein, two carefully engineered passivators based on the unique benzothiophene moiety involving the primary and secondary ammonium terminals, BTMA‐1 and BTMA‐2, respectively, are developed. It is shown that defects and, thus, nonradiative recombination reactions are effectively suppressed by simple posttreatments without the formation of LD perovskite. Interestingly, the champion efficiency of the BTMA‐2‐treated device increases to 23.10% from ≈20%, along with great stabilities and negligible hysteresis. An in‐depth understanding of the passivation effect influenced by steric and electronic properties is explored. The extra electron‐donating methyl on the ammonium nitrogen (BTMA‐2) increases the electron density on the N atom and the N–H+ ionic bond is, thus, boosted, which helps the positive terminal to anchor more tightly to the [PbI6]4− structure of the perovskite resulting in improved passivation effects. This novel and promising design strategy for ammonium passivators can promote PSCs to achieve further breakthroughs in both efficiency and stabilities.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3