Solar‐Driven Hydrogen Evolution with Superior Efficiency by a Low‐Cost, Large‐Scale Synergetic Hybrid of 1D‐Si Nanowires/0D‐Au Nanoparticles/2D‐MoS2 Nanofilms

Author:

Chen Chun‐Yen12,Mao Ching‐Han1ORCID,Hsiao Kai‐Yuan1,Huang Yu‐Sheng1,Chen Lih‐Juann1ORCID,Lu Ming‐Yen1ORCID,Tanaka Takuo23ORCID,Yen Ta‐Jen1ORCID

Affiliation:

1. Department of Materials Science and Engineering National Tsing Hua University Hsinchu Taiwan 30013 P.R.China

2. Innovative Photon Manipulation Research Team RIKEN Center for Advanced Photonics 2‐1 Hirosawa Wako Saitama 351‐0198 Japan

3. Metamaterials Laboratory RIKEN Cluster for Pioneering Research 2‐1 Hirosawa Wako Saitama 351‐0198 Japan

Abstract

The technology of semiconductor photocatalystshas become an important research area. 2D molybdenum disulfide (MoS2) is recognized as a promising catalyst for photoelectrocatalytic and photocatalytic (PC) hydrogen evolution reaction (HER). However, owing to its 2D nature of low optical cross‐section, the effective light absorption needs to be further boosted. Herein, we dramatically amplify the light‐matter interaction by hybridizing these photocatalysts with plasmonic materials that present strong electromagnetic field confinement and with nanowires that offer efficient light management. Such a system is designed in the heterostructure of silicon nanowires (SiNW)/ gold nanoparticles (AuNP)/ MoS2 nanofilms (SiNW/AuNP/MoS2), which demonstrates excellent PC HER. The absorption frequency of 2D‐MoS2, the resonance frequency of the 0D‐AuNP, and the antireflection frequency of 1D‐SiNW match with the visible range, enabling this heterostructure to effectively utilize solar energy. Additionally, an optimal MoS2 nanofilm that is a mixture of 1 T and 2 H phases was prepared with high reproducibility using facile pyrolysis. Moreover, the SiNW substrate validates high antireflection properties, achieving 95% visible light absorption. In addition, SiNW forms a p–n junction with the MoS2 to facilitate charge separation. The synergetic hybrid of 1D‐SiNW/0D‐AuNP/2D‐MoS2 nanofilms exhibits the highest hydrogen generation rate of 246 mmol g−1 h−1.

Funder

National Science and Technology Council

Chung-Shan Institute of Science and Technology

Ministry of Education

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3