Affiliation:
1. School of Materials Science and Engineering (SMSE) Gwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
2. Advanced Photonics Research Institute (APRI) Gwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
Abstract
The introduction of molecular doping process is necessary to enhance the optic and electronic properties of organic semiconductors for facilitating charge transport. In particular, since the doping process has a positive influence on the charge transfer interaction between host semiconductor and dopant, improved mobility has been efficiently achieved. Despite its advantages, doping technologies in organic solar cells (OSCs) are emphasized to the development of n‐type dopants used for balancing the electron and hole. In addition, since the bulk‐heterojunction microstructure in OSCs has randomly blended phases of the donor and acceptor, it is important to optimize charge extraction without loss by controlling the morphology. Herein, OSCs by p‐type doping with formic acid (FA) into a photoactive layer is reported. The champion device yields a significantly improved power conversion efficiency from 14.3% to 15.3% with a high fill factor of 71.7%. It is found that the p‐doped photoactive layer exhibits enhanced conductivity, improved carrier mobilities, suppressed charge recombination, and lowered leakage current. The FA simultaneously acts as a film morphology controller of the photoactive layer with enhanced phase separation to transport the charge efficiently. Thus, the doping process with FA can maintain the device performance in stability tests (95.6% remaining).
Funder
National Research Foundation of Korea
Gwangju Institute of Science and Technology
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献