Kabuli chickpea seed quality diversity and preliminary genome‐wide association study identifies markers and potential candidate genes

Author:

Mugabe Deus12,Frieszell Cristen M.3ORCID,Warburton Marilyn L.14ORCID,Coyne Clarice J.14ORCID,Sari Hatice1,Uhdre Renan1,Wallace Lyle4,Ma Yu5,Zheng Ping5,McGee Rebecca J.6,Ganjyal Girish M.3

Affiliation:

1. Department of Crop and Soil Sciences Washington State University Pullman Washington USA

2. Department of Plant Agriculture University of Guelph Guelph Ontario Canada

3. Department of Food Sciences Washington State University Pullman Washington USA

4. USDA ARS, Western Regional Plant Introduction Station Pullman Washington USA

5. Department of Horticulture Washington State University Pullman Washington USA

6. USDA ARS, Grain Legume Genetics Physiology Research Pullman Washington USA

Abstract

AbstractMalnutrition due to macro‐ and micro‐nutrient deficiencies is one of the major global health concerns, especially in developing countries. Using genomics‐assisted breeding to enhance the nutritional value of important crops such as chickpea (Cicer arietinum L.) can help to address the problem. In this study, we conducted genome‐wide association studies to identify genes associated with protein, starch, oil, and fiber in chickpea to create resources to speed the breeding process. The USDA kabuli chickpea mini‐core of 88 accessions was genotyped using genotyped‐by‐sequencing, and 36,645 single nucleotide polymorphisms (SNPs) were identified across the eight chromosomes of the chickpea genome. A genome‐wide marker‐trait analysis using the FarmCPU model was conducted to identify SNP markers that can enable marker‐assisted breeding for seed protein, fiber, oil, and starch concentrations. The most significantly associated markers for seed protein concentration (p = 8.82E‐12), starch (p = 2.79E‐12), fiber (p = 7.65E‐12), and oil (p = 1.37E‐08) were found on chromosomes 1, 2, 6, and 7, controlling 11%, 12%, 20%, and 16% of the phenotypic variation, respectively. Validation of the SNP markers in a broader set of plant genetic resources and environments will be needed to determine their usefulness in breeding for end‐use characteristics.

Publisher

Wiley

Subject

Plant Science,Soil Science,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3