Experimental and numerical analysis of dielectric polarization effects in near‐surface earth materials in the 100 Hz–10 MHz frequency range: First interpretation paths

Author:

Tabbagh A.1ORCID,Souffaché B.1ORCID,Jougnot D.1ORCID,Maineult A.1ORCID,Rejiba F.1ORCID,Adler P. M.1,Schamper C.1ORCID,Thiesson J.1ORCID,Finco C.2ORCID,Mendieta A.3ORCID,Rembert F.4ORCID,Guérin R.1ORCID,Camerlynck C.1

Affiliation:

1. Sorbonne Université, CNRS, EPHE, UMR 7619 Métis Paris France

2. Cerema, ENDSUM le grand Quevilly France

3. Institut de Physique du Globe de Paris, université Paris‐Cité, CNRS Paris France

4. Université Orléans, CNRS, BRGM, OSUC, ISTO, UMR 7327 Orléans France

Abstract

SummaryThe recent developments of electromagnetic induction and electrostatic prospection devices dedicated to critical zone surveys in both rural and urban contexts necessitate improving the interpretation of electrical properties through complementary laboratory studies. In a first interpretation step, the various experimental results obtained in the 100 Hz–10 MHz frequency range can be empirically fitted by a simple six‐term formula. It allows the reproduction of the logarithmic decrease of the real component of the effective relative permittivity and its corresponding imaginary component, the part associated with the direct current conductivity, one Cole–Cole relaxation and the real and imaginary components of the high‐frequency relative permittivity. For elucidating physical phenomena contributing to both the logarithmic decrease and the observed Cole–Cole relaxation, we first consider the Maxwell–Wagner–Sillars polarization. Using the method of moments, we establish that this continuous medium approach can reproduce a large range of relaxation characteristics. At the microscopic scale, the possible role of the rotation of the water molecules bound to solid grains is then investigated. In this case, contrary to the Maxwell–Wagner–Sillars approach, the relaxation parameters do not depend on the external medium properties.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3