Second Harmonic Imaging of Nasal, Auricular, and Costal Cartilage

Author:

Dilley Katelyn K.1ORCID,Lal Akarsh1,Nguyen Theodore V.1ORCID,Wong Brian J. F.123

Affiliation:

1. Beckman Laser Institute and Medical Clinic Irvine California U.S.A.

2. Department of Otolaryngology—Head and Neck Surgery University of California—Irvine Medical Center Orange California U.S.A.

3. Department of Biomedical Engineering Henry Samueli School of Engineering Irvine California U.S.A.

Abstract

ObjectiveThere is little knowledge about the histological organization of facial and costal cartilages in terms of matrix structure and cell morphology. Second harmonic generation (SHG) imaging is a nonlinear imaging technique that capitalizes on signal generation from highly ordered macromolecules such as collagen fibers. The purpose of this study was to use SHG microscopy to image collagen extracellular matrix (ECM) structure, chondrocyte size, and density of these cartilages.Study DesignExperimental.MethodsSurgical remnants of septal, lower lateral, rib, and auricular cartilages were collected following surgery, sectioned into 0.5–1 mm thick samples and fixed to facilitate batch process imaging. A Leica TCS SP8 MP Microscope and multiphoton laser were used to image the specimens. Images were analyzed for cell size, cell density, and collagen fiber directionality patterns using ImageJ.ResultsSHG images of septal specimens show mesh‐like structure of the ECM. There appears to be a superficial layer, characterized by flattened lacunae and middle zone, marked by circular lacunae clusters, similar to what is observed in articular cartilage. The structure of the ECM depicts a visible orientation perpendicular to the surface of the perichondrium. Cell size and density analysis through ImageJ suggests variety across cartilage types. Directionality analysis indicates that the collagen in the ECM displays preferred direction.ConclusionThis study establishes clear extracellular models of facial and costal cartilages. Limitations include heterogeneous cartilage thickness due to processing difficulties. Further studies include automating the cutting process to increase uniformity of tissue thickness and increasing sample size to further validate results.Level of Evidence2 Laryngoscope, 133:3370–3377, 2023

Publisher

Wiley

Subject

Otorhinolaryngology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3