Effects of body part thickness on low‐contrast detail detection and radiation dose during adult chest radiography

Author:

Al‐Murshedi Sadeq12ORCID,Alzyoud Kholoud3ORCID,Benhalim Mohamed4,Alresheedi Nadi5,Papathanasiou Stamatia6,England Andrew7

Affiliation:

1. College of Health and Medical Technology AL‐Zahraa University for Women Karbala Iraq

2. Physics Department, College of Education for Pure Science University of Babylon Babil Iraq

3. Department of Medical Imaging, Faculty of Applied Health science The Hashemite University Zarqa Jordan

4. Collage of Medical Technology Misurata Misurata Libya

5. Department of General studies, Royal Commission for Jubail and Yanbu Yanbu Industrial College Yanbu Kingdom of Saudi Arabia

6. City University of London London UK

7. School of Medicine University College Cork Cork Ireland

Abstract

AbstractIntroductionDifferences in patient size often provide challenges for radiographers, particularly when choosing the optimum acquisition parameters to obtain radiographs with acceptable image quality (IQ) for diagnosis. This study aimed to assess the effect of body part thickness on IQ in terms of low‐contrast detail (LCD) detection and radiation dose when undertaking adult chest radiography (CXR).MethodsThis investigation made use of a contrast detail (CD) phantom. Polymethyl methacrylate (PMMA) was utilised to approximate varied body part thicknesses (9, 11, 15 and 17 cm) simulating underweight, standard, overweight and obese patients, respectively. Different tube potentials were tested against a fixed 180 cm source to image distance (SID) and automatic exposure control (AEC). IQ was analysed using bespoke software thus providing an image quality figure inverse (IQFinv) value which represents LCD detectability. Dose area product (DAP) was utilised to represent the radiation dose.ResultsIQFinv values decreased statistically (P = 0.0001) with increasing phantom size across all tube potentials studied. The highest IQFinv values were obtained at 80 kVp for all phantom thicknesses (2.29, 2.02, 1.8 and 1.65, respectively). Radiation dose increased statistically (P = 0.0001) again with increasing phantom thicknesses.ConclusionOur findings demonstrate that lower tube potentials provide the highest IQFinv scores for various body part thicknesses. This is not consistent with professional practice because radiographers frequently raise the tube potential with increased part thickness. Higher tube potentials did result in radiation dose reductions. Establishing a balance between dose and IQ, which must be acceptable for diagnosis, can prevent the patient from receiving unnecessary additional radiation dose.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3