Parameter estimation of multiple‐input single‐output Hammerstein controlled autoregressive system based on improved adaptive moment estimation algorithm

Author:

Li Junhong1ORCID,Xiao Kang1ORCID,Gu Juping1,Hua Liang1

Affiliation:

1. School of Electrical Engineering Nantong University Nantong People's Republic of China

Abstract

AbstractIn this article, the problem of parameter estimation for a multiple‐input single‐output Hammerstein controlled autoregressive (MISO‐HCAR) model is solved. After establishing the identification model of MISO‐HCAR system, an improved adaptive moment estimation algorithm with decreasing weight (IADAM) is proposed. The improved algorithm transforms the nonlinear system identification problem into a parameter space optimization problem, according to the input and output data obtained from the system, and uses the parallel search ability of the IADAM algorithm to estimate all the parameters of the system simultaneously. Two numerical examples and the case study example of chemical continuously stirred tank reactor (CSTR) system show that the proposed IADAM algorithm with decreasing weight has better identification effect on the MISO‐HCAR model and CSTR system than the stochastic gradient descent (SGD) algorithm and the basic adaptive moment estimation (ADAM) algorithm, and the estimation accuracy and convergence speed are greatly improved. Thus, the IADAM can estimate the parameters of the MISO‐HCAR system and the CSTR system more effectively.

Funder

National Natural Science Foundation of China

Qinglan Project of Jiangsu Province of China

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering,Biomedical Engineering,General Chemical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3