Decades of warming alters maturation and reproductive investment in fish

Author:

Niu Jingyao1ORCID,Huss Magnus1ORCID,Vasemägi Anti2,Gårdmark Anna1ORCID

Affiliation:

1. Department of Aquatic Resources Swedish University of Agricultural Sciences Uppsala Sweden

2. Department of Aquatic Resources Institute of Freshwater Research, Swedish University of Agricultural Sciences Drottningholm Sweden

Abstract

AbstractHow does warming affect maturation and reproductive investment in ectotherms? Younger age and smaller size at maturation, as well as altered reproduction processes, have been found in a few species subjected to elevated temperatures. These observations, however, come from studies that do not distinguish effects of warming on maturation from those on growth, are also restricted to single generation responses to warming, or have additional stressors besides warming in the study system. Here, we study warming effects on maturation and reproductive investment in wild, unexploited fish populations using a whole‐ecosystem heating experiment. The experiment is conducted on Eurasian perch (Perca fluviatilis) in a heated and control area (with >5°C temperature difference) in the Baltic Sea. We compare female perch size at maturation using estimated probabilistic maturation reaction norms (PMRNs) and the gonado‐somatic index over 17 years of heating, spanning approximately five to eight perch generations. Using the PMRN approach, we show that warming has substantial effects on maturation size independent of warming‐induced changes in body growth. We found that young fish mature at a smaller size and invest more in developing their gonads in the heated population than in the unheated population. Our findings suggest that warming effects on reproductive investment may initially compensate for the cost of warming‐induced decrease in maturation size caused by the trade‐off between early maturation and size‐dependent fecundity. After multiple additional generations of warming, maturation and reproduction traits in perch differed from those in the first generations following the onset of warming, which suggests that warming‐induced evolution may have occurred. Our study is particularly relevant in the context of climate change because of the unusually large temperature difference between the areas and the fact that the heating occurred on an ecosystem level. We call for experimental studies resolving mechanisms of trait responses to warming across generations, complemented with genomic analyses, to aid understanding of organisms' long‐term responses to climate change.

Funder

Stiftelsen Oscar och Lili Lamms Minne

Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3