Characterization of shale pore heterogeneity and its controlling factors: A case study of the Longmaxi Formation in Western Hubei, China

Author:

Diao Zongbao1ORCID,Huo Feifei23,Li Pengfei4

Affiliation:

1. School of Physical and Electronic Science Zunyi Normal University Zunyi China

2. School of Engineering Zunyi Normal University Zunyi China

3. Department of Geology/State Key Laboratory of Continental Dynamics Northwest University Xi'an China

4. Natural Resources and Planning Bureau of Weihui Xinxiang China

Abstract

AbstractTo quantitatively characterize the complexity of shale pore structures and their controlling factors in the Longmaxi Formation of Western Hubei, our study focused on the organic‐rich shale outcrops of the Longmaxi Formation in the Yidu‐Hefeng compound anticline. We conducted tests for shale organic content, maturity, and whole‐rock mineral composition, along with employing high‐pressure mercury injection and low‐temperature gas adsorption experiments. Utilizing the V‐S, FHH, and sponge models, we calculated the fractal dimensions of micro‐, meso‐, and macropores. In the Yidu‐Hefeng region, the Longmaxi Formation is characterized by calcium‐rich shales that are abundant in organic matter. Our analysis of samples revealed a total organic carbon (TOC) ranging between 1.04% and 4.24%, with an average of 2.5%. The Ro values fluctuate between 2.98% and 3.57%, with a mean value of 2.845%, indicating an over‐mature stage from early to late thermogenesis. Constituents such as quartz span from 39.8% to 51.3%, with a median of 44.3%, while feldspar oscillates between 3.8% and 12.4%, averaging at 8.48%. Clay minerals constitute 24.3% to 41.7% of the samples, with a mean of 34.16%. Shale porosity exhibits a segmented fractal nature. For instance, D1 varies from 2.1278 to 2.4056, with a mean of 2.2767; D2 fluctuates between 2.4995 and 2.7492, averaging at 2.6309; and D3 ranges from 2.6835 to 2.9427, centering around 2.8111. These variations indicate the intricacies of the macropore structure. Positive correlations between TOC and maturity with D1 and D2 are evident, whereas a negative association is observed with D3. The collaborative interplay between siliceous minerals and organics mirrors the relationship between the siliceous mineral content and its fractal dimensions, akin to TOC. Clay mineral transformations, due to accumulation and dehydration, predominantly contribute to macro‐porosity, weakly aligning negatively with D1 and D2 but positively with D3. Variations in carbonate and siliceous minerals and their role in primarily yielding dissolution macropores manifest a subtle negative link with D1 and D2 while enhancing D3. Pore volume correlates positively with D1 and D2, exhibits no conspicuous association with D3, and trends negatively. The compaction and transformation processes of clay minerals seem to favor the generation of macropores, mildly aligning positively with D3.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3