Selective and efficient removal of phosphate from aqueous solution using activated carbon‐supported Mg–Fe layered double oxide nanocomposites

Author:

Bezza Fisseha A.1ORCID,Brink Hendrik G.1,Chirwa Evans M. N.1

Affiliation:

1. Water Utilization and Environmental Engineering Division, Department of Chemical Engineering University of Pretoria Pretoria South Africa

Abstract

AbstractIn the face of the continuous development of novel adsorbents, developing robust adsorbents with high efficiency, strong phosphate selectivity, high regenerability, and cost effectiveness is a scientific challenge. In the present study, an activated carbon‐supported MgFe2O4‐layered double hydroxide (AC@ MgFe2O4‐LDH) derived Mg–Fe layered double oxide (AC@ MgFe2O4‐LDO) nanocomposite was synthesized at various temperatures and its potential application for phosphate adsorption was investigated. The nanocomposite exhibited a hierarchical mesoporous structure with a Brunauer–Emmett–Teller (BET) specific surface area of 193 m2/g and a narrow per‐size distribution of ~2 nm. AC@MgFe2O4‐LDO exhibited a high point of zero charge (pHpzc) value of 9.8 and robust phosphate adsorption potential over a wide pH range of 4–9 due to its high pH buffering capacity. The effects of adsorbent dose, layered double hydroxides (LDH) calcination temperature, initial phosphate concentration, contact time, and temperature on the phosphate adsorption capacity of the adsorbent were investigated. In the present study, up to 99.0% removal of phosphate was achieved at a 4 g/L adsorbent dosage in 4 h at pH 7 and 30°C. An adsorption kinetics study revealed that the adsorption of phosphate by AC@MgFe2O4‐LDO reached equilibrium within 240 min, with the kinetic experimental data fitting well with pseudo‐first‐order kinetics (r2 >0.99). The Langmuir adsorption isotherm model fit the experimental data well, with a maximum adsorption capacity of 25.81 mg/g. The adsorbent displayed strong phosphate selectivity in the presence of competing anions, and the study demonstrated that AC@MgFe2O4‐LDO has promising potential for efficient phosphate adsorption over a wide pH range.

Funder

South African Agency for Science and Technology Advancement

Bundesministerium für Bildung, Wissenschaft und Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3