Bioinspired Anisotropic Microstructures toward Multimodal Deformations of Low‐Voltage‐Driven Ionic Actuators

Author:

Zhang Hao123,Lin Zhaohua1,Li Shuigen2,Ma Suqian24,Hu Yong13,Liang Yunhong24ORCID,Han Zhiwu2,Ren Lei245

Affiliation:

1. School of Mechanical and Aerospace Engineering Jilin University Changchun 130025 China

2. The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun 130025 China

3. Weihai Institute for Bionics‐Jilin University Weihai 264207 China

4. Institute of Structured and Architected Materials Liaoning Academy of Materials Shenyang 110167 China

5. Department of Mechanical Aerospace and Civil Engineering University of Manchester M13 9PL Manchester UK

Abstract

AbstractIonic polymer–metal composites (IPMCs) are a class of ionic actuators considered as potential candidates for future soft electronics that are operable under low voltages (generally <10 V), flexible, lightweight, and can be miniaturized. However, IPMCs can only generate linear bending deformation, but not complex 3D deformation, thus limiting their practical application. Herein, the IPMC actuators with anisotropic stripe microstructures are developed inspired by the botanical systems where microstructural anisotropy of the cell walls can lead to dynamic conformations. The stripe microstructure obtained via one‐way polishing is designed to present a certain angle to the edges of the IPMCs in the longitudinal direction and can be localized. Hence, the IPMCs are subjected to the anisotropic action of the microstructure while bending, yielding a complex 3D deformation. In addition, the large surface area and high ion accessibility area caused by polishing can enhance the actuation performance of IPMCs which is also influenced by the stripe angle, including higher displacement (up to 162%) and larger blocking force (up to 226%). Outstanding electromechanical properties and multimodal deformation model of IPMC actuators with microstructure are demonstrated by applications such as a soft switch, robotic gripper, and imitation of plant organs. This study can open a new vista for making high‐performance actuators and has significant implications for the expansion of the applicability of IPMC actuators.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Program for Jilin University Science and Technology Innovative Research Team

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3