A Ti‐Doped Chemical Vapor Deposition Diamond Device as Artificial Synapse for Neuromorphic Applications

Author:

Battistoni Silvia1,Carcione Rocco1,Tamburri Emanuela23,Erokhin Victor1ORCID,Terranova Maria Letizia23,Iannotta Salvatore1

Affiliation:

1. Consiglio Nazionale delle Ricerche Institute of Materials for Electronics and Magnetism (CNR‐IMEM) Parco Area delle Scienze 37A Parma 43124 Italy

2. Dip.to di Scienze e Tecnologie Chimiche & UdR INSTM di Roma Università degli Studi di Roma “Tor Vergata” Via della Ricerca Scientifica Rome 00133 Italy

3. Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER) Università degli Studi di Roma “Tor Vergata” Via Montpellier 1 Rome 00133 Italy

Abstract

AbstractThe great demand of multifunctional portable electronic products in daily life and the need of a large integration of memories with logic devices and sensors, have increased the interest in the identification of suitable materials for neuromorphic computing applications. Major innovations in this direction have been achieved by exploring materials belonging to different fields of applications and taking advantage of already consolidated deposition methods. Despite the great interest in the field and the large use in complementary applications such as sensing electrodes, neural and cellular interfaces, the use of diamond‐like materials in neuromorphic applications is still limited to a few examples. Herein, the development of a synaptic element based on high‐quality polycrystalline diamond layers containing Ti inclusions showing a marked and reproducible resistance switching behavior is reported. Realized by means of a hybrid chemical vapor deposition‐powder flowing technique, this titanium doped diamond shows a 3D polycrystalline organization that is characterized by globular grains of a few microns. The coupling of Raman spectroscopy, X‐ray photoelectron spectroscopy, and X‐ray diffraction analyses confirms the good quality of diamond phase and convincingly points out the inclusion of the titanium species within the diamond lattice.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3