Microstructural Control of a Multi‐Phase PH Steel Printed with Laser Powder Bed Fusion

Author:

Fields Brandon1ORCID,Amiri Mahsa2ORCID,Lim Jungyun3ORCID,Pürstl Julia T.1ORCID,Begley Matthew R.45ORCID,Apelian Diran12ORCID,Valdevit Lorenzo13ORCID

Affiliation:

1. Materials Science and Engineering University of California Irvine Irvine CA 92697 USA

2. Materials and Manufacturing Technology University of California Irvine Irvine 92697 USA

3. Mechanical and Aerospace Engineering University of California Irvine Irvine CA 92697 USA

4. Mechanical Engineering Department University of California Santa Barbara Santa Barbara CA 93106 USA

5. Materials Department University of California Santa Barbara Santa Barbara CA 93106 USA

Abstract

AbstractThe established approach to materials design for additive manufacturing (AM) consists of attempting to reproduce the uniform structures and properties of conventionally processed materials. While this certainly helped facilitate material certification and the rapid introduction of AM technologies in several industries, the opportunity to exploit unique features of specific AM processes to generate spatially varying microstructures–and hence novel materials, remains largely untapped. This work presents a method for manufacturing materials through laser powder bed fusion (LPBF), in which control over the spatial variation in phase composition and mechanical properties is achieved. This technique is demonstrated using 17‐4 precipitation‐hardened stainless steel (17‐4PH), by controlling spatial modulation of energy densities during printing. This results in local control of ferrite/martensite volume fractions, allowing the fabrication of metal/metal architected composites with hard/brittle regions interspersed with soft/tough regions. Local variations of ~20% in tensile strength and ~150% in elongation are achieved, with a spatial resolution of ~100 microns. The approach is general and robust, fully compatible with commercially available LPBF equipment, and applicable to virtually any multi‐phase alloy system. This work shifts the paradigm from attempting to print components with uniform properties to manufacturing alloys with controlled spatial property gradients.

Funder

Office of Naval Research

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3