A (101¯0$10\bar{1}0$)‐Orientated ZnO Single Crystal Chem‐Voltaic Device Beyond Conventional Fuel Cells

Author:

Meng Xiaohua12,Liu Bin12,Yang Heqing12ORCID,Liu Shengzhong13

Affiliation:

1. Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Laboratory for Advanced Energy Technology Key Laboratory of Macromolecular Science of Shaanxi Province School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 China

2. School of Chemistry and Chemical Engineering Xianyang Normal University Xian yang 712000 China

3. Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 China

Abstract

AbstractTo date, new prototype device for directly converting chemical energy into electricity is still the most important pursuit although various types of fuel cells have been developed/commercialized. In this work, a novel () orientated ZnO single crystal device is reported that generates electricity using the usual redox reactions. The principle of the device is similar to that of a photovoltaic device, known as a chem‐voltaic device. The air‐KBH4 chem‐voltaic device has an open‐circuit voltage (Voc) of 2.14 ± 0.007 mV and a short‐circuit current (Isc) of 1.44 ± 0.007 µA. The Voc and Isc increase to 2.24 mV and 2.81 µA, respectively, by preadding H2O2. A similar phenomenon is also observed when glucose is used to substitute KBH4. When KBH4 or glucose solution is added to the ZnO () surface, it reacts with chemisorbed oxygen to produce free electrons. Due to the presence of the spontaneous electric field (Es) in the polar [0001] azimuth of ZnO, these free electrons move along the [0001] direction, producing an electric current. So chemical energy is converted into electricity. This finding opens up research on the chem‐voltaic cell.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Higher Education Discipline Innovation Project

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3