Liquid Metal‐Based Multimodal Wearable Sensor Platform Enabled by Highly Accessible Microfabrication of PDMS with Tuned Mechanical Properties

Author:

Kim Byungjin12,Lee Sangmin3,Kim Jae In24,Lee Dong Hyeon5,Koo Bon‐Jae4,Kim Seong‐Geon3,Ryu Seyeong3,Kim Byungchul5,Seo Min‐Ho34,Jeong Joonsoo34ORCID

Affiliation:

1. School of Urban Architecture, and Civil Engineering Pusan National University Busan 46241 Republic of Korea

2. Medical Science Research Center Pusan National University Yangsan 50612 Republic of Korea

3. School of Biomedical Convergence Engineering Pusan National University Yangsan 50612 Republic of Korea

4. Department of Information Convergence Engineering Pusan National University Yangsan 50612 Republic of Korea

5. School of Mechanical Engineering Pusan National University Busan 46241 Republic of Korea

Abstract

AbstractThe seamless integration of wearable devices into user‐friendly and cost‐effective healthcare systems requires constituent materials with high degrees of flexibility, stretchability, and adhesive properties without compromising performance during dynamic body movements. This study proposes a liquid metal (LM)‐based multimodal skin‐mountable sensor platform using polydimethylsiloxane tuned for enhanced stretchability and stickiness (sPDMS) to fully leverage the LM's deformability. A highly accessible end‐to‐end fabrication approach is proposed for multifunctional LM sensors from modeling to fabrication and packaging, all achieved without the need for cleanroom facilities or special equipment. The LM‐based facile fabrication process tailored for sPDMS enables an adhesive‐free sensor patch with microfluidic channels of 100 µm width and stretchability up to 100%. A new analytical model provides enhanced estimation on the electromechanical behavior of LM channels compared with existing models. The funnel‐assisted LM filling and tape‐based channel sealing methods enable simple packaging of LM channels with robust external interconnection and direct skin‐interfaced monitoring. The feasibility of this healthcare platform is demonstrated through a multimodal sensor patch with electromechanical and electrophysiological functionalities. The proposed technology addresses current challenges in the cost and complexity of microfabrication, expanding the boundaries of wearable devices for highly accessible and personalized healthcare devices.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3