Magnetically Actuable Complex‐Shaped Microgels for Spatio‐Temporal Flow Control

Author:

Steinbeck Lea1ORCID,Braunmiller Dominik L.2ORCID,Wolff Hanna J. M.1ORCID,Huettche Vincent1ORCID,Wang Julia2,Wessling Matthias13ORCID,Crassous Jérôme J.2ORCID,Linkhorst John1ORCID

Affiliation:

1. Chemical Process Engineering AVT.CVT RWTH Aachen University Forckenbeckstr. 51 52074 Aachen Germany

2. Institute of Physical Chemistry IPC RWTH Aachen University Landoltweg 2 52074 Aachen Germany

3. DWI ‐ Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52074 Aachen Germany

Abstract

AbstractComplex‐shaped microgels are promising building blocks for soft metamaterials. Their active and remote orientational control provides significant potential in architecting them in time and space. This work describes the use of magnetically actuable microgels of complex shape for spatio‐temporal flow control and showcases the concept for microfluidic impellers. First, the fabrication of complex‐shaped magnetically actuable poly(ethylene glycol) diacrylate based microgels via stop‐flow lithography is presented. The microgels comprise a pre‐programmed magnetic moment set by pre‐aligned maghemite nanospindles during the fabrication step. This feature allows the microgels to be positioned in a static magnetic field and rotate under application of a rotating external field. The dependence of the magnetic field rotation rate and strength, maghemite content, and microgel shape on the magnetic response of the microgels is comprehensively quantified. Finally, the magnetic complex‐shaped microgels are integrated as actuable impellers in a microfluidic chip. The microgels are positioned in space by polymerizing them around fixed poly(dimethylsiloxane) (PDMS) pillars. Free rotation around the PDMS pillar is achieved due to the oxygen inhibition layer at the chip and pillar surface. The versatility of the fabrication methodology is showcased by the investigation of in‐chip mixing in a microfluidic device consisting of soft responsive impellers.

Funder

Alexander von Humboldt-Stiftung

Werner Siemens-Stiftung

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3