Spatiotemporally Mapped Endothelial Dysfunction at Bifurcations in a Coronary Artery‐on‐a‐Chip

Author:

Singh Jasneil1234ORCID,Gambhir Tanya123,Goh Tiffany1234ORCID,van Vuuren Isabelle123,Gao Lingzi1234ORCID,Wise Steven G.134ORCID,Waterhouse Anna134ORCID

Affiliation:

1. School of Medical Sciences Faculty of Medicine and Health The University of Sydney Camperdown NSW 2006 Australia

2. Heart Research Institute Newtown NSW 2042 Australia

3. The Charles Perkins Centre The University of Sydney Camperdown NSW 2006 Australia

4. The University of Sydney Nano Institute The University of Sydney Camperdown NSW 2006 Australia

Abstract

AbstractAtherosclerotic plaques are commonly observed at low shear regions, in particular, the left main coronary artery (LMCA) bifurcation. Low shear regions at bifurcations promote endothelial dysfunction, a key factor initiating atherogenesis, however, mechanisms underlying this process are poorly understood. Dynamic in vitro models are critical to investigate endothelial dysfunction, but current static and vessels‐on‐chip systems typically lack physiologically complex geometries and local shear changes. Here, a bifurcating coronary artery‐on‐a‐chip is developed, mimicking the human LMCA, displaying reduced shear near the bifurcation, verified using computational fluid dynamics simulations. Over 7 days of dynamic culture, human coronary artery endothelial cells aligned with the flow and expressed more Endothelial nitric oxide synthase (eNOS) and intercellular cell adheison molecule‐1 (ICAM‐1) at high shear regions (12.7 dyn cm−2) adjacent to, but not at the bifurcation (0–3 dyn cm−2). After tumor necrosis factor‐alpha (TNFα) stimulation to induce endothelial dysfunction, spatially mapping cellular changes and shear gradients revealed cell alignment is disrupted over a larger area surrounding the bifurcation at a higher shear, and ICAM‐1 expression is increased closer to the bifurcation at a lower shear. This coronary artery‐on‐a‐chip establishes a system to spatially map endothelial cell behavior in response to differential shear and vessel geometry, enabling future studies into plaque initiation events, treatment targets, and drug screening.

Funder

Australian Research Council

National Heart Foundation of Australia

NSW Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3