Developing Graphene‐based Conductive Textiles Using Different Coating Methods

Author:

Abdi Babak1,Tarhini Ali1,Baniasadi Hossein1ORCID,Tehrani‐Bagha Ali R.1ORCID

Affiliation:

1. School of Chemical Engineering Aalto University Espoo 02150 Finland

Abstract

AbstractIn this research, a series of graphene‐based conductive textiles is developed by three different coating methods, including dip‐coating (D), airbrushing (A), and filtration (F). The cellulose substrate consists of a blend of cotton and rayon fabric, and the coating formulation is based on a mixture of graphene powder as a conductive filler, polyurethane (PU) as a binder, and poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) as a thermoplastic co‐binder. The thermogravimetric analysis (TGA) results are used to prove an enhancement in the thermal stability of the coated fabrics. The graphene content of the coated samples is also estimated from the char residue at 800 °C of the TGA profiles. The graphene‐based coating converts the water‐adsorbing cellulose fabric to a hydrophobic surface as the water contact angle raises from 0° to more than 107° after coating. The mechanical properties of the plain cellulose fabric enhance considerably in terms of tensile strength and tensile modulus, where the highest improvement is seen in the Dip‐coating method, with an 89% increase in tensile strength compared to cellulose fabric. The graphene‐based coating developed in this work enhances the physical, thermal, mechanical, and conductivity properties of the plain cellulose substrate. The resulting coated fabrics can be potentially used in wearable smart electronic textiles.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3