Creating saponin‐free yellow pea seeds by CRISPR/Cas9‐enabled mutagenesis on β‐amyrin synthase

Author:

Hodgins Connor L.1ORCID,Salama Eman M.1,Kumar Rahul1ORCID,Zhao Yang2ORCID,Roth Susan A.1,Cheung Irene Z.1,Chen Jieyu2ORCID,Arganosa Gene C.3,Warkentin Thomas D.3ORCID,Bhowmik Pankaj4ORCID,Ham Byung‐Kook25,Ro Dae‐Kyun1ORCID

Affiliation:

1. Department of Biological Sciences University of Calgary Calgary Alberta Canada

2. Global Institute for Food Security University of Saskatchewan Saskatoon Saskatchewan Canada

3. Department of Plant Sciences University of Saskatchewan Saskatoon Saskatchewan Canada

4. Aquatic and Crop Resource Development National Research Council of Canada Saskatoon Saskatchewan Canada

5. Department of Biology University of Saskatchewan Saskatoon Saskatchewan Canada

Abstract

AbstractDry pea (Pisum sativum) seeds are valuable sources of plant protein, dietary fiber, and starch, but their uses in food products are restricted to some extent due to several off‐flavor compounds. Saponins are glycosylated triterpenoids and are a major source of bitter, astringent, and metallic off‐flavors in pea products. β‐amyrin synthase (BAS) is the entry point enzyme for saponin biosynthesis in pea and therefore is an ideal target for knock‐out using CRISPR/Cas9 genome editing to produce saponin deficient pea varieties. Here, in an elite yellow pea cultivar (CDC Inca), LC/MS analysis identified embryo tissue, not seed coat, as the main location of saponin storage in pea seeds. Differential expression analysis determined that PsBAS1 was preferentially expressed in embryo tissue relative to seed coat and was selected for CRISPR/Cas9 genome editing. The efficiency of CRISPR/Cas9 genome editing of PsBAS1 was systematically optimized in pea hairy roots. From these optimization procedures, the AtU6‐26 promoter was found to be superior to the CaMV35S promoter for gRNA expression, and the use of 37°C was determined to increase the efficiency of CRISPR/Cas9 genome editing. These promoter and culture conditions were then applied to stable transformations. As a result, a bi‐allelic mutation (deletion and inversion mutations) was generated in the PsBAS1 coding sequence in a T1 plant, and the segregated psbas1 plants from the T2 population showed a 99.8% reduction of saponins in their seeds. Interestingly, a small but statistically significant increase (~12%) in protein content with a slight decrease (~5%) in starch content was observed in the psbas1 mutants under phytotron growth conditions. This work demonstrated that flavor‐improved traits can be readily introduced in any pea cultivar of interest using CRISPR/Cas9. Further field trials and sensory tests for improved flavor are necessary to assess the practical implications of the saponin‐free pea seeds in food applications.

Funder

RES’EAU-WaterNET

Alberta Innovates

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3