Identification of herbarium specimen sheet components from high‐resolution images using deep learning

Author:

Thompson Karen M.1ORCID,Turnbull Robert1ORCID,Fitzgerald Emily1,Birch Joanne L.1

Affiliation:

1. University of Melbourne Melbourne Victoria Australia

Abstract

AbstractAdvanced computer vision techniques hold the potential to mobilise vast quantities of biodiversity data by facilitating the rapid extraction of text‐ and trait‐based data from herbarium specimen digital images, and to increase the efficiency and accuracy of downstream data capture during digitisation. This investigation developed an object detection model using YOLOv5 and digitised collection images from the University of Melbourne Herbarium (MELU). The MELU‐trained ‘sheet‐component’ model—trained on 3371 annotated images, validated on 1000 annotated images, run using ‘large’ model type, at 640 pixels, for 200 epochs—successfully identified most of the 11 component types of the digital specimen images, with an overall model precision measure of 0.983, recall of 0.969 and moving average precision (mAP0.5–0.95) of 0.847. Specifically, ‘institutional’ and ‘annotation’ labels were predicted with mAP0.5–0.95 of 0.970 and 0.878 respectively. It was found that annotating at least 2000 images was required to train an adequate model, likely due to the heterogeneity of specimen sheets. The full model was then applied to selected specimens from nine global herbaria (Biodiversity Data Journal, 7, 2019), quantifying its generalisability: for example, the ‘institutional label’ was identified with mAP0.5–0.95 of between 0.68 and 0.89 across the various herbaria. Further detailed study demonstrated that starting with the MELU‐model weights and retraining for as few as 50 epochs on 30 additional annotated images was sufficient to enable the prediction of a previously unseen component. As many herbaria are resource‐constrained, the MELU‐trained ‘sheet‐component’ model weights are made available and application encouraged.

Funder

Australian Research Council

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Reference41 articles.

1. Cooperative human-machine data extraction from biological collections

2. Anglin R. Best J. Figueiredo R. Gilbert E. Gnanasambandam N. Gottschalk S. Haston E. Heidron P. B. Lafferty D. Lang P. Nelson G. Paul D. L. Ulate W. Watson K. &Zhang Q.(2013).Improving the character of optical character recognition (OCR).iConference 2013.https://www.ideals.illinois.edu/items/35534

3. The SALIX Method: A semi-automated workflow for herbarium specimen digitization

4. Automatic extraction of leaf characters from herbarium specimens

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3