Pollinator‐mediated plant coexistence requires high levels of pollinator specialization

Author:

Bruninga‐Socolar Bethanne1ORCID,Socolar Jacob B.2ORCID,Konzmann Sabine3,Lunau Klaus3ORCID

Affiliation:

1. Biology Department Albright College Reading Pennsylvania USA

2. Natural Capital Exchange San Francisco California USA

3. Universität Düsseldorf Düsseldorf Germany

Abstract

AbstractIn pollen‐limited plant communities, the foraging behavior of pollinators might mediate coexistence and competitive exclusion of plant species by determining which plants receive conspecific pollen. A key question is whether realistic pollinator foraging behavior promotes coexistence or exclusion of plant species. We use a simulation model to understand how pollinator foraging behavior impacts the coexistence dynamics of pollen‐limited plants. To determine whether pollinators are likely to provide a biologically important coexistence mechanism, we compare our results to bee foraging data from the literature and from a novel experimental analysis. Model results indicate that strong specialization at the level of individual foraging paths is required to promote coexistence. However, few empirical studies have robustly quantified within‐bout specialization. Species‐level data suggest that foraging behavior is sufficient to permit pollinator‐mediated coexistence in species‐poor plant communities and possibly in diverse communities where congeneric plants co‐occur. Our experiments using bumblebees show that individual‐level specialization does exist, but not at levels sufficient to substantially impact coexistence dynamics. The literature on specialization within natural foraging paths suffers from key limitations, but overall suggests that pollinator‐mediated coexistence should be rare in diverse plant communities.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3