Deep‐learning based segmentation of ultrasound adipose image for liposuction

Author:

Cai Ruxin1ORCID,Liu Yanzhen1,Sun Zhibin1,Wang Yuneng2,Wang Yu1,Li Facheng2,Jiang Haiyue2

Affiliation:

1. Beihang University School of Biological Science and Medical Engineering Beijing China

2. Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital Beijing China

Abstract

AbstractBackgroundTo develop an automatic and reliable ultrasonic visual system for robot‐ or computer‐assisted liposuction, we examined the use of deep learning for the segmentation of adipose ultrasound images in clinical and educational settings.MethodsTo segment adipose layers, it is proposed to use an Attention Skip‐Convolutions ResU‐Net (Attention SCResU‐Net) consisting of SC residual blocks, attention gates and U‐Net architecture. Transfer learning is utilised to compensate for the deficiency of clinical data. The Bama pig and clinical human adipose ultrasound image datasets are utilized, respectively.ResultsThe final model obtains a Dice of 99.06 ± 0.95% and an ASD of 0.19 ± 0.18 mm on clinical datasets, outperforming other methods. By fine‐tuning the eight deepest layers, accurate and stable segmentation results are obtained.ConclusionsThe new deep‐learning method achieves the accurate and automatic segmentation of adipose ultrasound images in real‐time, thereby enhancing the safety of liposuction and enabling novice surgeons to better control the cannula.

Funder

Chinese Academy of Medical Sciences

Publisher

Wiley

Subject

Computer Science Applications,Biophysics,Surgery

Reference34 articles.

1. Liposuction: Review of the Techniques, Innovations and Applications

2. SongS KobayashiY FujieMG.Detection of Dermis and Fascia on Skin Layers for Liposuction Surgery Robot Using Texture and Geometric Information. 2012 12th International Conference on Control Automation and Systems;2012. Jeju Island Korea.

3. Updates and Advances in Liposuction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3