Geometric influence of width ratio and contraction ratio on droplet dynamics in microchannel using a 3D numerical simulation

Author:

Do Le Hung Toan1,Nguyen Thanh Tung1,Hoang Van Thanh1,Tran Minh Sang1

Affiliation:

1. Faculty of Mechanical Engineering The University of Danang—University of Science and Technology Danang City Vietnam

Abstract

AbstractMicrochannel geometry is an important factor in determining droplet dynamics in droplet‐based microfluidic systems, much like fluid properties and flow conditions. In this context, two important geometric parameters—the contraction ratio () and the width ratio ()—that are limited to particular value ranges are taken into consideration for evaluation. These parameters interact with the capillary number () and viscosity ratio () to affect different aspects of droplet migration and manipulation, such as trap and squeeze regimes. A theoretical model is proposed, and a three‐dimensional numerical simulation method is used in this work. This model predicts the change from trap to squeeze, which is caused by the interaction of the previously mentioned variables. Interestingly, an inverse correlation exists between the width ratio and the critical capillary number for this transition, which is determined as . Furthermore, the investigation explores the droplet elongation and velocity ratio during their passage through the microchannel. By matching input parameters with microchannel geometry, this information may be useful for the design of microfluidic systems, which would facilitate the careful control and manipulation of droplets.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3