An impact of Richardson number on the inclined MHD mixed convective flow with heat and mass transfer

Author:

Mahabaleshwar U. S.1,Anusha T.1,Sachhin S. M.1,Zeidan Dia2ORCID,Joo Sang Woo3

Affiliation:

1. Department of Studies in Mathematics Shivagangotri Davangere University Davangere Karnataka India

2. School of Electrical Engineering and Information Technology German Jordanian University Amman Jordan

3. School of Mechanical Engineering Yeungnam University Gyeongsan‐si South Korea

Abstract

AbstractThe two‐dimensional mixed convective MHD flow with heat and mass transfer is investigated for its behavior with Dufour and Soret mechanisms over the porous sheet. The copper–alumina (Cu–Al2O3) hybrid nanoparticles are used in the base fluid water. The governing system of partial differential equations is converted into a system of ordinary differential equations via similarity transformations, obtaining the solution for velocity, temperature, and concentration fields in exponential form. The problem is demonstrated in the Darcy–Brinkman model, the impact of included parameters such as Richardson number, magnetic field, and Dufour numbers are studied for the obtained solution with the help of graphs. Increasing the magnetic field decreases both transverse and axial velocity profiles. Increasing the magnetic field and Richardson's number decreases the solution (Al2O3–H2O). Increasing the values magnetic field and Richardson's number decreases both transverse and axial velocity profiles. Increasing the values of the Dufour effect increases the axial and transverse velocity boundary layer. The magnetohydrodynamic hybrid nanofluid flow over porous media works efficiently in liquid cooling and, therefore, has significant applications in industrial heating and cooling systems, solar energy, magnetohydrodynamic flow meters and pumps, manufacturing, regenerative heat exchange, thermal energy storage, solar power collectors, geothermal recovery, and chemical catalytic reactors.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3