Probabilistic LCF life prediction framework for turbine discs considering random load history

Author:

Bai Song12ORCID,Zeng Ying12,Huang Tudi12,Li Yan‐Feng12ORCID,Huang Hong‐Zhong12ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering University of Electronic Science and Technology of China Chengdu Sichuan China

2. Center for System Reliability and Safety University of Electronic Science and Technology of China Chengdu Sichuan China

Abstract

AbstractThe load history exerts a considerable impact on the low cycle fatigue (LCF) life of turbine discs. Thus, oversimplifying the load history leads to substantial errors in fatigue life prediction. This study introduces a probabilistic fatigue life prediction method for turbine discs, accounting for the randomness inherent in LCF load history. The method involves quantifying the randomness of load history through numerical simulation and employing a surrogate model enhanced with learning functions to balance computational efficiency and accuracy. The probabilistic LCF life prediction of full‐scale turbine disc was conducted, demonstrating that the fatigue life scatter predicted by the proposed method more closely aligns with experimental data compared to the original approach. By refining the numerical simulation process, the proposed method better accounts for uncertainties in load history while maintaining computational efficiency, offering significant insights for the fatigue reliability design of turbine discs.

Funder

National Science and Technology Major Project

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3