Affiliation:
1. Department of Infectious, Tropical Diseases and Immune Deficiency Pomeranian Medical University in Szczecin Szczecin Poland
2. Department of Biophysics, Faculty of Medical Sciences in Zabrze Medical University of Silesia Zabrze Poland
3. Department of Biostatistics and Translational Medicine Medical University of Lodz Lodz Poland
4. Department of Diagnostic Imaging Polish Mother's Memorial Hospital‐Research Institute Lodz Poland
5. Division of Data Science Pixel Technology Lodz Poland
6. Department of Radiology Regional Hospital Szczecin Poland
Abstract
AbstractIntroductionDuring COVID‐19 pandemic, artificial neural network (ANN) systems have been providing aid for clinical decisions. However, to achieve optimal results, these models should link multiple clinical data points to simple models. This study aimed to model the in‐hospital mortality and mechanical ventilation risk using a two step approach combining clinical variables and ANN‐analyzed lung inflammation data.MethodsA data set of 4317 COVID‐19 hospitalized patients, including 266 patients requiring mechanical ventilation, was analyzed. Demographic and clinical data (including the length of hospital stay and mortality) and chest computed tomography (CT) data were collected. Lung involvement was analyzed using a trained ANN. The combined data were then analyzed using unadjusted and multivariate Cox proportional hazards models.ResultsOverall in‐hospital mortality associated with ANN‐assigned percentage of the lung involvement (hazard ratio [HR]: 5.72, 95% confidence interval [CI]: 4.4–7.43, p < 0.001 for the patients with >50% of lung tissue affected by COVID‐19 pneumonia), age category (HR: 5.34, 95% CI: 3.32–8.59 for cases >80 years, p < 0.001), procalcitonin (HR: 2.1, 95% CI: 1.59–2.76, p < 0.001, C‐reactive protein level (CRP) (HR: 2.11, 95% CI: 1.25–3.56, p = 0.004), glomerular filtration rate (eGFR) (HR: 1.82, 95% CI: 1.37–2.42, p < 0.001) and troponin (HR: 2.14, 95% CI: 1.69–2.72, p < 0.001). Furthermore, the risk of mechanical ventilation is also associated with ANN‐based percentage of lung inflammation (HR: 13.2, 95% CI: 8.65–20.4, p < 0.001 for patients with >50% involvement), age, procalcitonin (HR: 1.91, 95% CI: 1.14–3.2, p = 0.14, eGFR (HR: 1.82, 95% CI: 1.2–2.74, p = 0.004) and clinical variables, including diabetes (HR: 2.5, 95% CI: 1.91–3.27, p < 0.001), cardiovascular and cerebrovascular disease (HR: 3.16, 95% CI: 2.38–4.2, p < 0.001) and chronic pulmonary disease (HR: 2.31, 95% CI: 1.44–3.7, p < 0.001).ConclusionsANN‐based lung tissue involvement is the strongest predictor of unfavorable outcomes in COVID‐19 and represents a valuable support tool for clinical decisions.
Subject
Infectious Diseases,Virology