Tin (II) Chloride Salt Melts as Non‐Innocent Solvents for the Synthesis of Low‐Temperature Nanoporous Oxo‐Carbons for Nitrate Electrochemical Hydrogenation

Author:

Zheng Xinyue1ORCID,Tian Zhihong2,Bouchal Roza1ORCID,Antonietti Markus1ORCID,López‐Salas Nieves13ORCID,Odziomek Mateusz1ORCID

Affiliation:

1. Colloid Chemistry Department Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany

2. Engineering Research Center for Nanomaterials Henan University Kaifeng 475004 P. R. China

3. Sustainable Materials Chemistry Paderborn University Warburger Strasse 100 30098 Paderborn Germany

Abstract

AbstractCarbonaceous electrocatalysts offer advantages over metal‐based counterparts, being cost‐effective, sustainable, and electrochemically stable. Their high surface area increases reaction kinetics, making them valuable for environmental applications involving contaminant removal. However, their rational synthesis is challenging due to the applied high temperatures and activation steps, leading to disordered materials with limited control over doping. Here, a new synthetic pathway using carbon oxide precursors and tin chloride as a p‐block metal salt melt is presented. As a result, highly porous oxygen‐rich carbon sheets (with a surface area of 1600 m2 g−1) are obtained at relatively low temperatures (400 °C). Mechanistic studies reveal that Sn(II) triggers reductive deoxygenation and concomitant condensation/cross‐linking, facilitated by the Sn(II) → Sn(IV) transition. Due to their significant surface area and oxygen doping, these materials demonstrate exceptional electrocatalytic activity in the nitrate‐to‐ammonia conversion, with an ammonia yield rate of 221 mmol g−1 h−1 and a Faradic efficiency of 93%. These results surpass those of other carbon‐based electrocatalysts. In situ Raman studies reveal that the reaction occurs through electrochemical hydrogenation, where active hydrogen is provided by water reduction. This work contributes to the development of carbonaceous electrocatalysts with enhanced performance for sustainable environmental applications.

Funder

Max-Planck-Gesellschaft

Alexander von Humboldt-Stiftung

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3