Tunable Negative and Positive Photoconductance in Van Der Waals Heterostructure for Image Preprocessing

Author:

Gao Zhaotan1,Jiang Ruiqi1,Deng Menghan1,Zhao Can1,Hong Zian1,Shang Liyan1,Li Yawei1,Zhu Liangqing1,Zhang Jinzhong1,Zhang Jian2,Hu Zhigao13ORCID

Affiliation:

1. Technical Center for Multifunctional Magneto‐Optical Spectroscopy (Shanghai) Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education) Department of Physics School of Physics and Electronic Science East China Normal University Shanghai 200241 China

2. School of Communication and Electronic Engineering East China Normal University Shanghai 200241 China

3. Collaborative Innovation Center of Extreme Optics Shanxi University Taiyuan Shanxi 030006 China

Abstract

AbstractThe processing of visual information occurs mainly in the retina, and the retinal preprocessing function greatly improves the transmission quality and efficiency of visual information. The artificial retina system provides a promising path to efficient image processing. Here, graphene/InSe/h‐BN heterogeneous structure is proposed, which exhibits negative and positive photoconductance (NPC and PPC) effects by altering the strength of a single wavelength laser. Moreover, a modified theoretical model is presented based on the power‐dependent photoconductivity effect of laser: , which can reveal the internal physical mechanism of negative/positive photoconductance effects. The present 2D structure design allows the field effect transistor (FET) to exhibit excellent photoelectric performance (RNPC = 1.1× 104 AW−1, RPPC = 13 AW−1) and performance stability. Especially, the retinal pretreatment process is successfully simulated based on the negative and positive photoconductive effects. Moreover, the pulse signal input improves the device responsivity by 167%, and the transmission quality and efficiency of the visual signal can also be enhanced. This work provides a new design idea and direction for the construction of artificial vision, and lay a foundation for the integration of the next generation of optoelectronic devices.

Funder

National Natural Science Foundation of China

Key Technologies Research and Development Program

Publisher

Wiley

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3