Nanometer Control of Ruddlesden‐Popper Interlayers by Thermal Evaporation for Efficient Perovskite Photovoltaics

Author:

Datta Kunal1,Kim Sanggyun1,Li Ruipeng2,LaFollette Diana K.1,Yang Jingwei3,Perini Carlo A. R.1,Correa‐Baena Juan‐Pablo14ORCID

Affiliation:

1. School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA

2. National Synchrotron Light Source II Brookhaven National Laboratory Upton NY 11973 USA

3. School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta GA 30332 USA

4. School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA

Abstract

AbstractSolution‐processed Ruddlesden‐Popper (RP) interlayers in lead halide perovskite solar cells (PSCs) present processing challenges due to fast film formation and uncontrolled growth of phases and layer thickness at interfaces. In this work, an alternative, solvent‐free, thermal co‐evaporation process is developed to deposit RP interlayers. The method provides precise control on interlayer thickness and enables understanding its role on charge‐carrier extraction. Studying RP film growth reveals the development of heterointerfaces when deposited on three‐dimensional (3D) perovskite layers. This allows a large thickness window with an optimum between 20 nm and 40 nm to improve the optoelectronic properties of the underlying 3D perovskite. Solar cells using evaporated interlayers achieve power conversion efficiency of 21.6%, compared to 19.6% for untreated devices, driven by improvements in the open‐circuit voltage and fill factor. This work sheds light on the importance of phase and thickness control of passivation layers, which ultimately determine the solar cell performance in state‐of‐the‐art PSCs.

Funder

National Science Foundation

National Aeronautics and Space Administration

National Science Foundation Graduate Research Fellowship Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3