Over 19% Efficient Inverted Organic Photovoltaics Featuring a Molecularly Doped Metal Oxide Electron‐Transporting Layer

Author:

Nugraha Mohamad Insan12ORCID,Ling Zhaoheng1,Aniés Filip1,Ardhi Ryanda Enggar Anugrah1,Gedda Murali1,Naphade Dipti1,Tsetseris Leonidas3,Heeney Martin1,Anthopoulos Thomas D.14ORCID

Affiliation:

1. King Abdullah University of Science and Technology (KAUST) KAUST Solar Centre (KSC) Thuwal 23955‐6900 Saudi Arabia

2. Research Center for Nanotechnology Systems National Research and Innovation Agency (BRIN) South Tangerang Banten 15314 Indonesia

3. Department of Physics School of Applied Mathematical and Physical Sciences National Technical University of Athens 9 Heroon Polytechniou Street, Zografou Campus Athens GR‐15780 Greece

4. Henry Royce Institute and Photon Science Institute Department of Electrical and Electronic Engineering The University of Manchester Oxford Road Manchester M13 9PL UK

Abstract

AbstractMolecular doping is commonly utilized to tune the charge transport properties of organic semiconductors. However, applying this technique to electrically dope inorganic materials like metal oxide semiconductors is challenging due to the limited availability of molecules with suitable energy levels and processing characteristics. Herein, n‐type doping of zinc oxide (ZnO) films is demonstrated using 1,3‐dimethylimidazolium‐2‐carboxylate (CO2‐DMI), a thermally activated organic n‐type dopant. Adding CO2‐DMI into the ZnO precursor solution and processing it atop a predeposited indium oxide (InOx) layer yield InOx/n‐ZnO heterojunctions with increased electron field‐effect mobility of 32.6 cm2 V−1 s−1 compared to 18.5 cm2 V−1 s−1 for the pristine InOx/ZnO bilayer. The improved electron transport originates from the ZnO's enhanced crystallinity, reduced hydroxyl concentrations, and fewer oxygen vacancy groups upon doping. Applying the optimally doped InOx/n‐ZnO heterojunctions as the electron‐transporting layers (ETLs) in organic photovoltaics (OPVs) yields cells with improved power conversion efficiency of 19.06%, up from 18.3% for devices with pristine ZnO, and 18.2% for devices featuring the undoped InOx/ZnO ETL. It is shown that the all‐around improved OPV performance originates from synergistic effects associated with CO2‐DMI doping of the thermally grown ZnO, highlighting its potential as an electronic dopant for ZnO and potentially other metal oxides.

Funder

King Abdullah University of Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3