Meta‐Lens Particle Image Velocimetry

Author:

Liu Xiaoyuan1ORCID,Zhao Zhou2ORCID,Xu Shengming2,Zhang Jingcheng1ORCID,Zhou Yin1,He Yulun2,Yamaguchi Takeshi3,Ouyang Hua2,Tanaka Takuo345ORCID,Chen Mu Ku167ORCID,Shi Shengxian2ORCID,Qi Fei2ORCID,Tsai Din Ping167ORCID

Affiliation:

1. Department of Electrical Engineering City University of Hong Kong 83 Tat Chee Avenue, Kowloon Hong Kong 999077 China

2. School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China

3. Innovative Photon Manipulation Research Team RIKEN Center for Advanced Photonics Saitama 351‐0198 Japan

4. Metamaterial Laboratory RIKEN Cluster for Pioneering Research Saitama 351‐0198 Japan

5. Institute of Post‐LED Photonics Tokushima University Tokushima 770‐8506 Japan

6. The State Key Laboratory of Terahertz and Millimeter Waves City University of Hong Kong Kowloon Hong Kong 999077 China

7. Centre for Biosystems, Neuroscience, and Nanotechnology City University of Hong Kong Kowloon Hong Kong 999077 China

Abstract

AbstractFluid flow behavior is visualized through particle image velocimetry (PIV) for understanding and studying experimental fluid dynamics. However, traditional PIV methods require multiple cameras and conventional lens systems for image acquisition to resolve multi‐dimensional velocity fields. In turn, it introduces complexity to the entire system. Meta‐lenses are advanced flat optical devices composed of artificial nanoantenna arrays. It can manipulate the wavefront of light with the advantages of ultrathin, compact, and no spherical aberration. Meta‐lenses offer novel functionalities and promise to replace traditional optical imaging systems. Here, a binocular meta‐lens PIV technique is proposed, where a pair of GaN meta‐lenses are fabricated on one substrate and integrated with a imaging sensor to form a compact binocular PIV system. The meta‐lens weigh only 116 mg, much lighter than commercial lenses. The 3D velocity field can be obtained by the binocular disparity and particle image displacement information of fluid flow. The measurement error of vortex‐ring diameter is ≈1.25% experimentally validates via a Reynolds‐number (Re) 2000 vortex‐ring. This work demonstrates a new development trend for the PIV technique for rejuvenating traditional flow diagnostic tools toward a more compact, easy‐to‐deploy technique. It enables further miniaturization and low‐power systems for portable, field‐use, and space‐constrained PIV applications.

Funder

City University of Hong Kong

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Japan Science and Technology Corporation

Guangdong Provincial Department of Science and Technology

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3