Affiliation:
1. Zhongnan Hospital of Wuhan University Institute of Hepatobiliary Diseases of Wuhan University Transplant Center of Wuhan University National Quality Control Center for Donated Organ Procurement Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver Hubei Engineering Center of Natural Polymer‐based Medical Materials Wuhan 430071 China
Abstract
AbstractLiver and kidney failure can lead to extensive accumulation of toxic metabolites in the blood and tissues, such as bilirubin, blood ammonia, endotoxins, cytokines, creatinine, uric acid, and urea, which aggravate the progression of the disease. Hemoperfusion can effectively adsorb and remove toxins from the blood and treat liver and kidney failure. However, the adsorption efficiency and safety of traditional hemoperfusion adsorbents are not ideal. Thus, it is urgent to develop adsorbents with good blood compatibility, as well as high adsorption and strong selective capacities, to fulfill the clinical needs. In recent years, new hemoperfusion adsorbents with improved adsorption performance and good blood compatibility have been developed. This review classifies and summarizes the recent research progress in hemoperfusion adsorbents for common blood toxins (bilirubin, blood ammonia, endotoxins, cytokines, creatinine, uric acid, and urea) produced by liver and kidney failure. The composition and structure of various toxin adsorbents, toxin adsorption performance, biocompatibility, blood safety, and the adsorption mechanisms of toxins are discussed. Based on a summary of recent studies, feasible strategies have been explored for designing and preparing hemoperfusion adsorbents to fulfill future development requirements. The trends and clinical application prospects of various toxin adsorbents are also discussed.
Funder
National Natural Science Foundation of China
Wuhan Science and Technology Project
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献