Synergy of Dendrites‐Impeded Atomic Clusters Dissociation and Side Reactions Suppressed Inert Interface Protection for Ultrastable Zn Anode

Author:

Tian Xiaomeng12,Zhao Qin1ORCID,Zhou Mengmeng1,Huang Xinjun1,Sun Ying1,Duan Xiaoguang3,Zhang Lei4,Li Hui2,Su Dawei5ORCID,Jia Baohua2,Ma Tianyi2ORCID

Affiliation:

1. Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province Institute of Clean Energy Chemistry College of Chemistry Liaoning University Shenyang 110036 China

2. School of Science RMIT University Melbourne VIC 3000 Australia

3. School of Chemical Engineering The University of Adelaide Adelaide SA 5005 Australia

4. School of Chemistry and Chemical Engineering Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials South China University of Technology Guangzhou 510640 China

5. School of Mathematical and Physical Sciences Faculty of Science University of Technology Sydney Sydney NSW 2007 Australia

Abstract

AbstractThe sluggish ions‐transfer and inhomogeneous ions‐nucleation induce the formation of randomly oriented dendrites on Zn anode, while the chemical instability at anode–electrolyte interface triggers detrimental side reactions. Herein, this report in situ designs a multifunctional hybrid interphase of Bi/Bi2O3, for the first time resulting in a novel synergistic regulation mechanism involving: (i) chemically inert interface protection mechanism suppresses side reactions; and more fantastically, (ii) innovative thermodynamically favorable Zn atomic clusters dissociation mechanism impedes dendrites formation. Assisted by collaborative modulation behavior, the Zn@Bi/Bi2O3 symmetry cell delivers an ultrahigh cumulative plating capacity of 1.88 Ah cm−2 at 5 mA cm−2 and ultralong lifetimes of 300 h even at high current density and depth of discharge (10 mA cm−2, DODZn: 60%). Furthermore, under a low electrolyte‐to‐capacity ratio (E/C: 45 µL mAh−1) and negative‐to‐positive capacity ratio (N/P: 6.3), Zn@Bi/Bi2O3||MnO2 full‐cell exhibits a superior capacity retention of 86.7% after 500 cycles at 1 A g−1, which outperforms most existing interphases. The scaled‐up Zn@Bi/Bi2O3||MnO2 battery module (6 V, 1 Ah), combined with the photovoltaic panel, presents excellent renewable‐energy storage ability and long output lifetime (12 h). This work provides a fantastic synergistic mechanism to achieve the ultrastable Zn anode and can be greatly promised to apply it into other metal‐based batteries.

Funder

National Natural Science Foundation of China

Department of Education of Liaoning Province

Natural Science Foundation of Liaoning Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3