Affiliation:
1. Hubei Key Laboratory of Optical Information and Pattern Recognition School of Optical Information and Energy Engineering Wuhan Institute of Technology Wuhan 430205 China
2. Key Lab of Artificial Micro‐and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
Abstract
AbstractNarrow‐bandgap (NBG) mixed tin‐lead (Sn‐Pb) perovskite solar cells (PSCs) serve as crucial top subcells in all‐perovskite tandem solar cells (TSCs). However, the prevalent use of poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) hole transport layers (HTLs) in NBG PSCs compromises device efficiency and stability. To address this, the study proposes a revitalizing strategy for the buried interface of Sn‐Pb perovskites by directly immersing acetylcholine chloride (ACh) into PEDOT: PSS. ACh acts as a proficient “diver,” not only modulating the bottom PEDOT: PSS HTLs but also facilitating the reconstruction of the buried interface and significantly enhancing the quality of the top perovskite layers. This intervention with ACh prevents Sn2+ oxidation, mitigates buried defects, and encourages the growth of large, densely packed grains within Sn‐Pb perovskites. Consequently, the optimized NBG PSCs exhibit significantly improved hole transport and reduced carrier recombination, achieving a steady‐state efficiency of 22.98% with enhanced stability. Furthermore, these optimized NBG Sn‐Pb cells enable highly efficient two‐terminal and four‐terminal all‐perovskite TSCs, boasting steady‐state efficiencies of 27.54% (certified at 26.41%) and 28.01%, respectively. This study emphasizes the importance of optimizing NBG PSCs through buried interface reconstruction, propelling the advancement of all‐perovskite TSCs.
Funder
National Natural Science Foundation of China