Super‐Ionic Conductor Soft Filler Promotes Li+ Transport in Integrated Cathode–Electrolyte for Solid‐State Battery at Room Temperature

Author:

Yang Binbin1,Deng Chenglong1,Chen Nan12ORCID,Zhang Fengling1,Hu Kaikai1,Gui Boshun1,Zhao Liyuan1,Wu Feng13,Chen Renjie123ORCID

Affiliation:

1. School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 China

2. Institute of Advanced Technology Beijing Institute of Technology Jinan 250300 China

3. Collaborative Innovation Center of Electric Vehicles in Beijing Beijing 100081 China

Abstract

AbstractComposite polymer solid electrolytes (CPEs), possessing good rigid flexible, are expected to be used in solid‐state lithium‐metal batteries. The integration of fillers into polymer matrices emerges as a dominant strategy to improve Li+ transport and form a Li+‐conducting electrode–electrolyte interface. However, challenges arise as traditional fillers: 1) inorganic fillers, characterized by high interfacial energy, induce agglomeration; 2) organic fillers, with elevated crystallinity, impede intrinsic ionic conductivity, both severely hindering Li+ migration. Here, a concept of super‐ionic conductor soft filler, utilizing a Li+ conductivity nanocellulose (Li‐NC) as a model, is introduced which exhibits super‐ionic conductivity. Li‐NC anchors anions, and enhances Li+ transport speed, and assists in the integration of cathode–electrolyte electrodes for room temperature solid‐state batteries. The tough dual‐channel Li+ transport electrolyte (TDCT) with Li‐NC and polyvinylidene fluoride (PVDF) demonstrates a high Li+ transfer number (0.79) due to the synergistic coordination mechanism in Li+ transport. Integrated electrodes’ design enables stable performance in LiNi0.5Co0.2Mn0.3O2|Li cells, with 720 cycles at 0.5 C, and 88.8% capacity retention. Furthermore, the lifespan of Li|TDCT|Li cells over 4000 h and Li‐rich Li1.2Ni0.13Co0.13Mn0.54O2|Li cells exhibits excellent performance, proving the practical application potential of soft filler for high energy density solid‐state lithium‐metal batteries at room temperature.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3