Simple‐Structured Acceptor with Highly Interconnected Electron‐Transport Pathway Enables High‐Efficiency Organic Solar Cells

Author:

Gu Xiaobin1,Zeng Rui2,He Tengfei3,Zhou Guanqing2,Li Congqi1,Yu Na4,Han Fei2,Hou Yuqi1,Lv Jikai1,Zhang Ming2,Zhang Jianqi5,Wei Zhixiang5,Tang Zheng4,Zhu Haiming6,Cai Yunhao1,Long Guankui3,Liu Feng2,Zhang Xin1,Huang Hui1ORCID

Affiliation:

1. College of Materials Science and Opto‐Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics University of Chinese Academy of Sciences Beijing 101408 China

2. School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules In‐situ Center for Physical Science and Center of Hydrogen Science Shanghai Jiao Tong University Shanghai 200240 China

3. School of Materials Science and Engineering National Institute for Advanced Materials Renewable Energy Conversion and Storage Center (RECAST) Nankai University Tianjin 300071 China

4. Center for Advanced Low‐Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China

5. Center for Excellence in Nanoscience (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS) National Center for Nanoscience and Technology Beijing 100190 China

6. Department of Chemistry Zhejiang University Hangzhou 310058 China

Abstract

AbstractAchieving desirable charge‐transport highway is of vital importance for high‐performance organic solar cells (OSCs). Here, it is shown how molecular packing arrangements can be regulated via tuning the alkyl‐chain topology, thus resulting in a 3D network stacking and highly interconnected pathway for electron transport in a simple‐structured nonfused‐ring electron acceptor (NFREA) with branched alkyl side‐chains. As a result, a record‐breaking power conversion efficiency of 17.38% (certificated 16.59%) is achieved for NFREA‐based devices, thus providing an opportunity for constructing low‐cost and high‐efficiency OSCs.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Fundamental Research Funds for the Central Universities

Key Research Program of Frontier Science, Chinese Academy of Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3