A 3d‐4d‐5d High Entropy Alloy as a Bifunctional Oxygen Catalyst for Robust Aqueous Zinc–Air Batteries

Author:

He Ren12ORCID,Yang Linlin12,Zhang Yu3,Jiang Daochuan4,Lee Seungho5,Horta Sharona5,Liang Zhifu1,Lu Xuan1,Ostovari Moghaddam Ahmad6,Li Junshan7,Ibáñez Maria5,Xu Ying8,Zhou Yingtang9,Cabot Andreu110ORCID

Affiliation:

1. Catalonia Energy Research Institute – IREC Sant Adrià de Besòs 08930 Barcelona Spain

2. Departament d'Enginyeria Electrònica i Biomèdica Universitat de Barcelona 08028 Barcelona Spain

3. Department of Materials Science and Engineering Pennsylvania State University University Park PA 16802 USA

4. School of Materials Science and Engineering Anhui University 230601 Hefei China

5. Institute of Science and Technology Austria (ISTA) 3400 Am Campus 1 Klosterneuburg Austria

6. South Ural State University 454080 76 Lenin Av Chelyabinsk Russia

7. Institute of Advanced Study Chengdu University 610106 Chengdu China

8. Hebei Key Lab of Optic‐electronic Information and Materials College of Physics Science and Technology Hebei University 071002 Baoding China

9. Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control,National Engineering Research Center for Marine Aquaculture Marine Science and Technology College Zhejiang Ocean University Zhoushan Zhejiang Province 316004 China

10. ICREA Pg. Lluis Companys 23 Barcelona Catalonia 08010 Spain

Abstract

AbstractHigh entropy alloys (HEAs) are highly suitable candidate catalysts for oxygen evolution and reduction reactions (OER/ORR) as they offer numerous parameters for optimizing the electronic structure and catalytic sites. Herein, FeCoNiMoW HEA nanoparticles are synthesized using a solution‐based low‐temperature approach. Such FeCoNiMoW nanoparticles show high entropy properties, subtle lattice distortions, and modulated electronic structure, leading to superior OER performance with an overpotential of 233 mV at 10 mA cm−2 and 276 mV at 100 mA cm−2. Density functional theory calculations reveal the electronic structures of the FeCoNiMoW active sites with an optimized d‐band center position that enables suitable adsorption of OOH* intermediates and reduces the Gibbs free energy barrier in the OER process. Aqueous zinc–air batteries (ZABs) based on this HEA demonstrate a high open circuit potential of 1.59 V, a peak power density of 116.9 mW cm−2, a specific capacity of 857 mAh gZn−1, and excellent stability for over 660 h of continuous charge–discharge cycles. Flexible and solid ZABs are also assembled and tested, displaying excellent charge–discharge performance at different bending angles. This work shows the significance of 4d/5d metal‐modulated electronic structure and optimized adsorption ability to improve the performance of OER/ORR, ZABs, and beyond.

Funder

Generalitat de Catalunya

China Scholarship Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3