Photochromic Carbon Nanomaterials: An Emerging Class of Light‐Driven Hybrid Functional Materials

Author:

Hassan Fathy12ORCID,Tang Yuqi3ORCID,Bisoyi Hari Krishna1ORCID,Li Quan13ORCID

Affiliation:

1. Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program Kent State University Kent OH 44242 USA

2. Department of Chemistry Faculty of Science Tanta University Tanta 31527 El‐Gharbia Egypt

3. Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing Jiangsu 211189 China

Abstract

AbstractPhotochromic molecules have remarkable potential in memory and optical devices, as well as in driving and manipulating molecular motors or actuators and many other systems using light. When photochromic molecules are introduced into carbon nanomaterials (CNMs), the resulting hybrids provide unique advantages and create new functions that can be employed in specific applications and devices. This review highlights the recent developments in diverse photochromic CNMs. Photochromic molecules and CNMs are also introduced. The fundamentals of different photochromic CNMs are discussed, including design principles and the types of interactions between CNMs and photochromic molecules via covalent interactions and non‐covalent bonding such as π−π stacking, amphiphilic, electrostatic, and hydrogen bonding. Then the properties of photochromic CNMs, e.g., in photopatterning, fluorescence modulation, actuation, and photoinduced surface‐relief gratings, and their applications in energy storage (solar thermal fuels, photothermal batteries, and supercapacitors), nanoelectronics (transistors, molecular junctions, photo‐switchable conductance, and photoinduced electron transfer), sensors, and bioimaging are highlighted. Finally, an outlook on the challenges and opportunities in the future of photochromic CNMs is presented. This review discusses a vibrant interdisciplinary research field and is expected to stimulate further developments in nanoscience, advanced nanotechnology, intelligently responsive materials, and devices.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3