Bottom Contact Engineering for Ambient Fabrication of >25% Durable Perovskite Solar Cells

Author:

Yuan Ligang12ORCID,Zou Shibing2,Zhang Kaicheng3,Huang Peng4,Dong Yuyan2,Wang Jiarong2,Fan Kezhou5,Lam Man Yu5,Wu Xiao6,Cheng Wei4,Tang Ruijia7,Chen Wenhao1,Liu Weiqing1,Wong Kam Sing5,Yan Keyou2ORCID

Affiliation:

1. Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province Key Laboratory of Nondestructive Testing Ministry of Education School of the Testing and Photoelectric Engineering Nanchang Hangkong University Nanchang 330063 China

2. School of Environment and Energy State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling South China University of Technology Guangzhou 510000 China

3. Institute of Materials for Electronics and Energy Technology (i‐MEET) Friedrich‐Alexander‐University Erlangen‐Nüremberg Martensstraße 7 91058 Erlangen Germany

4. Research Institute of Frontier Science Southwest Jiaotong University Chengdu 610031 China

5. Department of Physics and William Mong Institute of Nano Science and Technology The Hong Kong University of Science and Technology Clearwater Bay Hong Kong 999077 P. R. China

6. Department of Physics The Chinese University of Hong Kong Shatin Hong Kong 999077 P. R. China

7. College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China

Abstract

AbstractThe bottom contact in perovskite solar cells (PSCs) is easy to cause deep trap states and severe instability issues, especially under maximum power point tracking (MPPT). In this study, sodium gluconate (SG) is employed to disperse tin oxide (SnO2) nanoparticles (NPs) and regulate the interface contact at the buried interface. The SG‐SnO2 electron transfer layer (ETL) enabled the deposition of pinhole‐free perovskite films in ambient air and improved interface contact by bridging effect. SG‐SnO2 PSCs achieved an impressive power conversion efficiency (PCE) of 25.34% (certified as 25.17%) with a high open‐circuit voltage (VOC) exceeding 1.19 V. The VOC loss is less than 0.34 V relative to the 1.53 eV bandgap, and the fill factor (FF) loss is only 2.02% due to the improved contact. The SG‐SnO2 PSCs retained around 90% of their initial PCEs after 1000 h operation (T90 = 1000 h), higher than T80 = 1000 h for the control SnO2 PSC. Microstructure analysis revealed that light‐induced degradation primarily occurred at the buried holes and grain boundaries and highlighted the importance of bottom‐contact engineering.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3