Affiliation:
1. Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute) Shenyang 110042 P. R. China
2. Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education Dalian University of Technology Dalian 116024 P. R. China
3. School of Physics Dalian University of Technology Dalian 116024 P. R. China
4. Department of Mechanical Engineering Hong Kong Polytechnic University Hong Kong 999077 P. R. China
Abstract
AbstractElectrowetting‐on‐dielectric (EWOD), recognized as the most successful electrical droplet actuation method, is essential in diverse applications, ranging from thermal management to microfluidics and water harvesting. Despite significant advances, it remains challenging to achieve repeatability, high speed, and simple circuitry in EWOD‐based droplet manipulation on superhydrophobic surfaces. Moreover, its efficient operation typically requires electrode arrays and sophisticated circuit control. Here, a newly observed droplet manipulation phenomenon on superhydrophobic surfaces with orbital EWOD (OEW) is reported. Due to the asymmetric electrowetting force generated on the orbit, flexible and versatile droplet manipulation is facilitated with OEW. It is demonstrated that OEW droplet manipulation on superhydrophobic surfaces exhibits higher speed (up to 5 times faster), enhanced functionality (antigravity), and manipulation of diverse liquids (acid, base, salt, organic, e.g., methyl blue, artificial blood) without contamination, and good durability after 1000 tests. It is envisioned that this robust droplet manipulation strategy using OEW will provide a valuable platform for various processes involving droplets, spanning from microfluidic devices to controllable chemical reactions. The previously unreported droplet manipulation phenomenon and control strategy shown here can potentially upgrade EWOD‐based microfluidics, antifogging, anti‐icing, dust removal, and beyond.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献